Суть процесса ректификации. Сущность процесса ректификации Ректификация спирта описание процесса

Введение

ректификация тепловой флегмовый изоляция

Ректификация известна с начала ХХ века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты). Таким образом, процесс ректификации позволяет решить одну из главных задач химической технологии - выделение целевых продуктов требуемой чистоты.

Ректификация - это процесс разделения жидких смесей, который сводится к одновременно протекающим и многократно повторяемым процессам частичного испарения и конденсации разделяемой смеси на поверхности контакта фаз. Ректификационные колонны предназначены для проведения процессов массообмена в химической, нефтехимической промышленности. В зависимости от диаметра, колонные аппараты изготавливают с тарелками различных типов .

Наряду с общими требованиями (высокая интенсивность единицы объема аппарата, его стоимость и т.д.) ряд требований может определяться спецификой производства: большим интервалом устойчивой работы при изменении нагрузок, способность тарелки работать в среде загрязненных жидкостей, защиты от коррозии и т.п. Зачастую эти качества становятся превалирующими, определяющими, пригодность конструкции для использования в каждом конкретном процессе .

Расчет ректификационной колонны сводится к определению основных геометрических размеров диаметра и высоты. Оба параметра в значительной мере определяются нагрузками по пару и жидкости, типом тарелки, свойствами взаимодействующих фаз.

Теоретические основы процесса ректификации

Ректификация - массообменный процесс разделения однородной смеси летучих компонентов, осуществляемый путем противоточного многократного взаимодействия паров, образующихся при перегонке с жидкостью, образующейся при конденсации этих паров. Разделение жидкой смеси основано на различной летучести веществ. При ректификации исходная смесь делится на две части: дистиллят - смесь, обогащенную низкокипящим компонентом (НК), и кубовый остаток - смесь, обогащенную высококипящим компонентом (ВК). Процесс ректификации осуществляется в ректификационной установке. Основным аппаратом является ректификационная колонна, в которой пары перегоняемой жидкости поднимаются снизу, а навстречу парам стекает жидкость, подаваемая в виде флегмы в верхнюю часть аппарата. Процесс ректификации может протекать при атмосферном давлении, а также при давлениях выше и ниже атмосферного. Под вакуумом ректификацию проводят, когда разделению подлежат высококипящие жидкие смеси. Повышенное давление применяют для разделения смесей, находящихся в газообразном состоянии при более низком давлении. Атмосферное давление применяют при разделении смеси жидкостей на составляющие компоненты и чистота получаемых дистиллята и кубового остатка зависят от того, насколько развита поверхность контакта фаз, от количества подаваемой на орошение флегмы и устройства ректификационной колонны.

Процесс ректификации применяется для разделения жидкостей, отличающихся по температурам кипения, за счет противоточного многократного контактирования паров и жидкостей. Для создания тесного контакта между паром и жидкостью ректификационные колонны снабжаются специальными устройствами - насадкой или ректификационными тарелками.

Насадочные колонны применяются в малотоннажных производствах и используются в тех случаях, когда необходим малый перепад давления. Для заполнения насадочных колонн применяются кольца Рашига, изготовленные из различных материалов, кольца Паля, наемки из элементов седлообразного профиля (седла Инталлокс и Берля).

Тарельчатые колонны широко распространены на НПЗ. Различают тарелки по способу передачи жидкости с тарелки на тарелку (провальные и со специальными переточными устройствами), по характеру движения фаз на тарелке (барботажные и струйные), по конструкции устройств для ввода пара в жидкость (контактные, колпачковые, клапанные и др.). В табл. 5.7 представлены сведения об основных типах тарелок, применяемых в химической и нефтеперерабатывающей промышленности.

Технологический расчет ректификационной колонны состоит из следующих операций: 1) составление материального баланса; 2) определение давления в колонне; 3) расчет температурного режима (температуры входа сырья, верха и низа колонны, отбора боковых погонов в сложных колоннах); 4) определение флегмового числа (кратности орошения), т.е. отношения количества орошения, подаваемого в верхнюю часть колонны, к количеству дистиллята; 5) составление теплового баланса; 6) определение внутренних материальных потоков; 7) расчет числа теоретических тарелок; 8) определение числа реальных (действительных) тарелок.

Для непрерывного протекания процесса ректификации необходимо, что бы поступающая на разделение смесь соприкасалась со встречным потоком пара с большей концентрацией труднолетучего (высококипящего) компонента, чем в смеси. Поэтому в установках для непрерывной ректификации (рис. 1) колонны выполняют из двух частей: нижней (исчерпывающей) и верхней (укрепляющей). В исчерпывающей части колонны происходит удаление легколетучего компонента из стекающей вниз жидкости, а в верхней - обогащение поднимающихся вверх паров легколетучим компонентом.

Принципиальная схема ректификационной установки приведена на рисунке 1:

Рисунок 1. - Принципиальная схема ректификационной установки:

1 - емкость для исходной смеси; 2,9 - насосы; 3 - теплообменник-подогреватель; 4 - кипятильник; 5 - ректификационная колона; 6 - дефлегматор; 7 - холодильник дистиллята; 8 - емкость для сбора дистиллята; 10 - холодильник кубовой жидкости; 11 - емкость для кубовой жидкости.

Исходную смесь из промежуточной емкости 1 центробежным насосом 2 подают в теплообменник 3 , где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5, где состав жидкости равен составу исходной смеси.

Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка Х W , т.е. обеделен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой), получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8. Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и направляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).

Ректификация известна с начала 19 века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию все шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты).

ВВЕДЕНИЕ

Ректификация известна с начала 19 века как один из важнейших технологических процессов главным образом нефтяной и спиртовой промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение в производствах органического синтеза: изотопов, полимеров, полупроводников и различных других веществ высокой частоты.

В начале 2003 года в Нью-Йорке была официально зарегистрирована технология Линас.

Экономические и технические преимущества технологии Линас по сравнению с традиционными ректификационными технологиями подтверждены и проверены на стабильно работающих промышленных нефтеперерабатывающих установках Линас.

Преимущества, которые дает новая колонна ЛИНАС при промышленной эксплуатации:

Стабильно высокое качество получаемых продуктов и устойчивость работы колонны Линас при ведении технологического процесса.

При равномерной подаче сырья и тепла на установку технологические параметры колонны могут не меняться в течение нескольких месяцев работы. При этом качество получаемых продуктов отвечает самым строгим требованиям. Отклонения фракционного состава продуктов при анализе отличалось не более чем на 1-2оС в течение нескольких месяцев работы.

Использование ряда оригинальных решений в конструкции колонны Линас для первичной нефтеперегонки привело к тому, что качество прямогонного бензина, дизельного топлива и мазута даже при различных технологических режимах находится на высоком уровне.

Высокая степень разделения при небольшой высоте колонны.

Ректификационные колонны Линас отличаются очень высокой эффективностью разделения компонентов исходной смеси. Это позволяет получать результаты, не достижимые даже на самых современных НПЗ.
Высокая степень разделения в нефтеперерабатывающей колонне дает уникальную возможность увеличения выхода дизельного топлива. Это достигается за счет смещения границы деления между бензиновой и дизельной фракциями. В зависимости от фракционного состава нефти выход дизельной фракции может быть увеличен на 5-12% от общей производительности установки. А это значительно улучшает экономику НПЗ. На этой основе разработан модифицированный вариант нефтеперерабатывающей установки Линас с повышенным выходом дизельного топлива.

Уникальная применимость в вакуумных процессах.

Одной из ключевых особенностей технологии Линас является низкое гидравлическое сопротивление ректификационной колонны.

Традиционные колонны имеют значительное гидравлическое сопротивление. Применение их в вакуумной ректификации зачастую приводит к ситуации, когда давление по высоте колонны отличается в десятки и сотни раз. Назвать такой процесс вакуумным можно лишь с большой натяжкой.

Низкое гидравлическое сопротивление делает колону Линас уникально незаменимой для процессов вакуумной ректификации.

Резкое снижение пожаро- и взрывоопасности при возникновении аварийных ситуаций.

В силу очень небольшого количества вещества в колонне Линас резко уменьшается пожаро- и взрывоопасность всей ректификационной установки Линас.

Неоднократные отключения электроэнергии в процессе пусконаладки при работе на максимальном технологическом режиме не приводили к возникновению аварийных ситуаций. Конструкция колонны и технологической обвязки аппаратов в подобной ситуации предотвращают возможность аварии независимо от состояния системы противоаварийной защиты.

В процессе пусконаладочных работ были зафиксированы случаи подачи на установку сырья с содержанием воды от 12% (обводненное сырье) до 100% (вода из товарно-сырьевого парка после гидроиспытаний). Попадание воды в печь нагрева сырья и в колонну на максимальном режиме не приводило к возникновению аварийной ситуации.

Повышенная эксплуатационная надежность оборудования и устойчивость к образованию загрязнений.

После эксплуатации в течение 3,5 лет был произведен детальный осмотр всех элементов колонны Линас. Внутри колонны не были обнаружены следы отложений или коррозии. Это объясняется наличием постоянно стекающей пленки жидкой флегмы по поверхностям массообмена трубок и особенностью конструкции всей колонны.

1. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

1.1 Теоретические основы процесса ректификации

Ректификация - это процесс разделения однородных жидких смесей, не находящихся в термодинамическом равновесии, на компоненты в зависимости от их летучести при противоточном взаимодействии жидкости и пара.

Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно легколетучий компонент (ЛЛК), которым обогащаются пары, а из паров конденсируется преимущественно тяжелолетучий компонент (ТЛК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый ЛЛК. Эти пары после конденсации в отдельном аппарате дают дистиллят и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путём частичного испарения снизу колонны остатка, являющегося почти чистым ТЛК.

Физическая сущность ректификации

Исходная смесь, состоящая из ЛЛК и ТЛК, подаётся в ректификационную колонну на тарелку питания при температуре кипения. При подаче на тарелку исходная смесь растекается по ней и стекает вниз. В куб ректификационной колонны подводится теплота, за счёт которой жидкость нагревается, испаряется и образует восходящий поток пара. При контакте пара со стекающей исходной смесью, часть пара конденсируется, за счёт этого в нём увеличивается концентрация ТЛК. Часть жидкости испаряется, причём в пар переходит ЛЛК, а в жидкости остаётся ТЛК. В результате этого пар на выходе из ректификационной колонны представляет собой стопроцентный ЛЛК, а жидкость на выходе снизу колонны - ТЛК.

Для создания потока жидкости, стекающей сверху колонны, часть конденсата (верхнего продукта), называемая флегмой, возвращается в колонну, а другая часть выводится в виде верхнего продукта.

Процесс ректификации может осуществляться непрерывно и периодически под атмосферным и избыточным давлением, а так же под вакуумом.

Движущей силой массообменных процессов является разность концентраций между компонентами различных фаз.

Высоту Н абсорбера рассчитывают по общему уравнению массопередачи. Например, если движущая сила выражена в концентрациях газовой фазы, то

Н = М/(Ку*а*S*∆Уср)

Где М - количество поглощаемого газа; Ку - коэффициент массопередачи; а - удельная поверхность контакта фаз; S - площадь сечения колонны; ∆Уср - средняя движущая сила процесса.

1.2 Описание технологической схемы для непрерывной ректификационной колонны

Состоит из ректификационного массообменного аппарата - ректификационной колонны, представляющей собой вертикальный цилиндрический корпус, внутри которого расположены контактные устройства (насадка, тарелки). Снизу вверх по колонне движется поток пара, поступающий в ее нижнюю часть из испарителя, находящегося рядом или под самой колонной. Поступающий в колонну пар по составу представляет собой практически чистый ТЛК. На каждой тарелке при его перемещении по колонне происходит конденсация поднимающегося пара и за счет теплоты его конденсации - испарение находящегося в этой зоне ЛЛК.

Таким образом, происходит постоянное удаление из выходящего пара ТЛК и обогащение его ЛЛК. В результате из верхней части колонны выгружаются пары практически чистого ЛЛК, который конденсируется в дефлегматоре. Получается, жидкость разделяется в делителе на 2 потока. Первый поток - флегма, возвращается назад в колонну, создавая тем самым нисходящий поток жидкости, состоящий практически из чистого ЛЛК. Стекая вниз по колонне и взаимодействуя с восходящим паром, флегма постоянно обогащается конденсирующимся из нее ТЛК, заменяющим постоянно испаряющийся ЛЛК. В результате жидкость, достигающая нижней части колонны и поступающая в испаритель, состоит практически из низколетучего компонента.

Подаваемую на разделение исходную смесь подогревают до температуры кипения в теплообменнике и подают в колонну, в зону, положение которой определяют в результате расчета контактного ректификационного аппарата.

Зона питания делит колонну на 2 части. Верхняя, или укрепляющая, часть обеспечивает наибольшее укрепление поднимающихся паров, то есть обогащение их ЛЛК. Нижняя, или кубовая (исчерпывающая) часть, обеспечивает наибольшее удаление из жидкости ЛЛК.

Второй поток жидкости, получаемый в дефлегматоре и называемый дистиллятом, поступает в холодильник - теплообменник, а затем в сборник, откуда перекачивается в качестве целевого продукта насосом.

Жидкость, выходящая из нижней части колонны, также делится на 2 потока. Первый возвращается в испаритель, откуда в виде пара подается назад в колонну. Второй, называемый кубовым остатком, после охлаждения в холодильнике направляется в сборник.

спирт вода насадочный колонна

1.3 Устройство, принцип действия ректификационных колонн

Ректификационная колонна имеет цилиндрический корпус, внутри которого установлены контактные устройства в виде тарелок или насадок. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника, который находится вне колонны, т. е является выносным, либо размещается непосредственно под колонной. Следовательно, с помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх. Пусть концентрация жидкости на первой тарелке равна х1 (по низкокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, причем в пар переходит преимущественно низколетучий компонент. Поэтому на следующую (вторую) тарелку поступает пар с содержанием низколетучего компонента y1>x1.

Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно тяжелолетучий компонент, содержание которого в поступающем на тарелку паре выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моль низколетучего компонента необходимо сконденсировать 1 моль тяжелолетучего компонента, т. е фазы на тарелке обмениваются эквимолекулярными количествами компонента.

На второй тарелке жидкость имеет состав х2 , содержит больше низколетучего компонента, чем на первой (х2>х1) , и соответственно кипит при более высокой температуре (t2х2 , и т. д.

Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый ТЛК, по мере движения вверх все более обогащается низкокипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого низколетучего компонента, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.

На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, которая поступает на так называемую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предварительно направляют в подогреватель до температуры кипения жидкости на питающей тарелке.

Питающая тарелка как бы делит колонну на две части, имеющие различное назначение. В верхней части (от питающей до верхней тарелки) должно быть обеспечено, возможно, большее укрепление паров, т. е обогащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому НК. Поэтому данная часть колонны называется укрепляющей. В нижней части (от питающей до нижней тарелки) необходимо в максимальной степени удалить из жидкости НК, т. е исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ТЛК. Соответственно, эта часть колонны называется исчерпывающей.

1.4 Устройство, принцип действия насадочной ректификационной колонны

Насадочная ректификационная колонна, более обычная по конструкции, представляет собой цилиндрический вертикальный аппарат, заполненный по всей высоте либо на отдельных участках так именуемой насадкой определенных размеров и конфигурации телами из инертных материалов.

Колонна состоит из двух частей: верхней - укрепляющей и нижней - исчерпывающей. Внутри каждой части колонны находится решетка, на которую укладывается насадка. Сверху укрепляющей части колонны установлены приспособления для кипятильника поступают под решетку исчерпывающей части колонны и проходят по ней снизу вверх; жидкость, наоборот, протекает сверху вниз. В результате контакта паров с жидкостью происходит постепенное обогащение пара ЛЛК, а жидкости - ТЛК.

Пройдя колонну, пары направляются, как обычно, в дефлегматор, а жидкость из низа исчерпывающей части колонны частично отбирается в виде кубового остатка, содержащего относительно чистый менее летучий компонент, а частично идет в кипятильник. Насадку загружают в колонну через верх, а для выгрузки ее в обеих частях колонны устроены специальные люки.

Насадки представляют собой твердые тела различной формы, которые загружают в корпус колонны в навал или укладывают определенным образом. Развитая поверхность насадок обуславливает значительную поверхность контакта пара и жидкости.

Для заполнения насадочных колонн широко применяют кольца Рашига, изготовленные из различных материалов, что обеспечивает универсальность их практического использования. Однако кольца Рашига обладают относительно невысокой производительностью и сравнительно высоким сопротивлением. Последнее ограничивает их применение для вакуумных процессов.

Созданные в последние годы различные модификации колец Рашига - кольца Паля, кольца Борад и другие позволили получить лучшие рабочие характеристики, чем при кольцах Рашига. В связи с необходимостью создания насадок с низким гидравлическим сопротивлением были разработаны различные варианты регулярной укладки насадочных тел, блочные насадки, а также насадки из сеток различных конструкций.

Насадку укладывают на опорные распределительные решетки и плиты. Свободное сечение таких устройств должно быть по возможности больше и приближаться к величине свободного объема насадки. Чтобы насадка работала эффективно, поверхность насадки должна хорошо смачиваться жидкостью.

В насадочных колоннах фактически нереально достигнуть равномерного распределения стекающей сверху вниз воды по всем поперечным сечениям аппарата. В особенности неравномерно распределяется жидкость при огромных поперечниках колонн. Именно потому контактирование фаз в их недостаточно, вследствие чего же тяжело добиться точного разделения.

В текущее время насадочные колонны для ректификации используют редко, их вытеснили тарельчатые колонны.

2. РАСЧЁТ РЕКТИФИКАЦИОННОЙ КОЛОННЫ

2.1 Определение материального баланса колонны

А) общий материальный баланс mf=mp+mw=1,42 кг/с, где mf - расход исходной смеси, кг/с mp - расход дистиллята, кг/с mw - расход кубового остатка, кг/с Б) частный материальный баланс по легкокипящему компоненту

mf*хf=mp*xp+mw*хw

mf*xf=(mf-mw)*хp+mw*xw

mw=mf*[(xp-xf)/(xp-хw)]=1,42*[(80-20)/(80-2)]=1,09 кг/с mp = mf - mw = 1,42 - 1,09 = 0,33 кг/с

2.2 Определение оптимального рабочего флегмового числа

Для расчетов сосчитали массовые доли компонента в мольные, используя формулу

х=(х/Ма)/[(х/Ма)+(1-х/Мб)],кмоль/кмоль(*100=мольные%)

где Ма, Мб - молярные массы соответственно легколетучего (спирта) и тяжелолетучего компонента (воды)

xf=(xf/Ma)/(xf/Ma)+(1-xf/Mб)= (0,2/46)/(0,2/46)+(1-0,2/18)*100=8,9 мольн. %

xp=(xp/Ma)/(xp/Ma)+(1-хp/Mб)=(0,8/46)/(0,8/46)+(1-0,8/18)*100=60,71 мольн. %w=(xw/Ma)/(xw/Ma)+(1-xw/Мб)=(0,02/46)/(0,02/46)+(1-0,02/18)*100=0,7 мольн. %

Этанол - вода

X - конц-ция ЛЛК в жид-ти

Y - конц-ция ЛЛК в паре

Т - тем-ра кипения двойной смеси


Определяем минимальное флегмовое число

Rmin = (Хр-Yf)/(Yf - Xf)=(60,7 1- 42)/(42 - 8,9)=18,71/33,1=0,57

Оптимальное рабочее флегмовое число определяем по формуле:

R = Rmin*=0,57*1,7=0,97

Где - коэффициент избытка флегмы, принимаем 1,6-1,8

2.3 Определение число теоретических ступеней

Строим рабочую линию колонны. Т.к. колонна состоит из двух частей:

исчерпывающей и укрепляющей, то линию строим по четырем точкам.

Уравнение линии процесса в укрепляющей части колонны:

Y = R*x/(R+l) + xp/(R+l)

т.А х = хр = 60, 71 у = хр = 60,71

т.В х = 0 y=xp/R+l=60,71/0,97+1=30,82

Соединив эти 2 точки, получаем рабочую линию укрепляющей части колонны.

Уравнение линии процесса в исчерпывающей части колонны

Y = [(R+F)/(R+l)]*x-*xw

F, W - относительные расходы исходной смеси и кубового остатка, т.е. отнесенные на

моль дистиллята

т. С х = xf = 8,9 до пересечения с линией АВ

т. Д х = xw = 0,7 у = хw = 0,7

Соединив эти две точки, получаем рабочую линию исчерпывающей части колонны.

АСД - рабочая линия колонны

Подсчитываем число теоретических ступеней отдельно в каждой части колонны

ЧТСукр, ЧТСисч, ∑ЧТС = ЧТСукр + ЧТСисч=4,5+4=8,5

2.4 Определение теплового баланса

Для выполнения тепловых расчетов определяем температуры кипения и теплоемкости исходной смеси, дистиллята и кубового остатка. Строим график температурной зависимости Т = f (X).

Построив график, получили: Tf=87 0C, Tw=96,1 0C, Tp=79 0C

По полученным температурам кипения для исходной смеси, дистиллята и кубового остатка находим теплоемкости ЛЛК (Са) и ТЛК (Сб). Теплоемкость смеси при каждой температуре находим по формуле:

Ссм= Са*х -Сб*(1-х)

Таким образом, итоговым результатом должны стать значения Ссмf, Ссмр, Ссмw

Св=1,1*4190=4609 Дж/(кг*К)

Ссмf=3310,1*0,089+4609(1-0,089)=294,6+4198,8=4493,2 Дж/(кг*К)

При Tw=96,1 0C

Ссп=0,83*4190=3477,7 Дж/(кг*К)

Св=1*4190=4190 Дж/(кг*К)

Ссмw=3477,7*0,007+4190(1-0,007)=24,34+4160,7=4185,04 Дж/(кг*К)

Ссп=0,78*4190=3268,2 Дж/(кг*К)

Св=1,05*4190=4399,5 Дж/(кг*К)

Ссмр=3288,2*0,6071+4399,5(1-0,6071)=1984,12+1728,6=3712,72 Дж/(кг*К)

Составляем уравнение теплового баланса:

Приход теплоты:

А) с исходной смесью в колонну

Qf=mf* Cсмf *Tf=1,42 *4493,4*87=555114,63 Дж

Б) с флегмой

QR=mR*CсмR*TR=0,3201 *3712,72*79=93887 Дж

mR=R*mp=0,97*0,33=0,3201 кг/с,

CсмR=Ссмр=3712,72, TR = Тр =790C

В) с греющим паром

Qг.п. =D*Iг.п. =D*2730000= 2730*103*D Дж

Принимаем греющий пар давлением 3 кг/с*см для всех расчетов с температурой

Тг.п. = 132,9 °С, Iг.п. = 2730 кДж/кг, rг.п.=2171 кДж/кг

Расход теплоты:

A) с паром из колонны

Qп"=m"п*I‘п=0,6501*294727,87=191602,6Дж

где I "п - энтальпия пара в верхней части колонны

I "п = rп + Cp*tp=1422,99+3712,72*79=294727,87 Дж/кг, rп - теплота парообразования, рассчитывается:

rп=ra*x+rб*(1-x)=848,1*0,6071+2311,22*(1-0,6071)=514,9+908,09=1422,99 Дж/кг

Для точного расчета применяем метод интерполяции:

rсп=(r2-r1)/(t2-t1)*[(t-t1)+г1]=(812,9-879,9)/(100-60)*[(79-60)+879,9]= -1,675*19+879,9=848,1 Дж/кг

rв=2311,22 Дж/кг

m"n = mp + mR =0,33+0,3201= 0,6501 кг/с

Б) с кубовым остатком

Qw=mw* Cсмw *Tw=1,09*4185,04*96,1=438378,8 Дж

) с конденсатом греющего пара

конд=D*Cв*Tг.п.=D*4,19*103*132,9=556851*D Дж

Г) Тепловые потери (составляют 5% от тепла, отдаваемого греющим паром). Потери обозначаются Qnoт, и учитываются в тепловом балансе. Из уравнения общего тепловою баланса находим расход греющего пара D.

Qпот=Qг.п*0,05=D*2730000*0,05=136500*D

Qf +QR+Qг.п.=Qn’+Qw+Qконд+Qпот

63+93887+2730000*D=191602,6+43878,8+556851*D+136500*D

2.5 Определение диаметра ректификационной колонны

Определяем расход и плотность пара в верхнем и нижнем сечениях колонны

Vc = mc /ρс

Где Vc - объемный расход пара, м3/с

mс - массовый расход пара, кг/с

ρп - плотность пара, кг/м3

ρп=М*Р*Т0/22,4*Р0*Т

Где М - молярная масса смеси, кг/кмоль

Р, Т - рабочие давление и температура, кг*с/ см2, К

Р0,Т0 - давление и температура при нормальных условиях

Р0= 1 кг*с/см2= 101,3 кПа

Верхнее сечение:

m"n=mp*(R+l)=0,33*(0,97+1)=0,6501кг/с

М"см=Ма*хр+Мб*(1-хр)=46*0,6071+18*(1-0,6071)=35мольн.% Р" = Ратм = 1 кг*с/см2=98100 Па

ρ"п=Мсм*Р*Т0/22,4*Р0*Тр=35*98100*273/22,4*101300*352=1,17 кг/м3

V"с=m‘n/ρ’n=0,6501/1,17=0,56 м3/с

Нижнее сечение:

Массовый расход пара находим из теплового баланса кипятильника:

D*rг.п. = m"п * г"п""п=(D*rг.п.)/ r""п= 0,045*2171*103/2258,07*103=0,043 кг/с

г"п находим методом интерполяции для каждого компонента смеси при температуре кубового остатка (Tw).

r""сп=[(812,9-879,9)/(100-60)]*(96,1-60)+879,9= -1,675*36,1+879,9=819,43 кДж

r""в=[(2258,4-2359)/(100-60)]*(96,1-60)+2359=-2,515*36,1+2359=2268,21 кДж

r""п= r´´сп*xw+ r´´в*(1-xw)=819,43*0,007+2268,21(1-0,007)=2258,07*103 Дж

М"см=Мсп*xw+Mв(1-xw)=46*0,007+18*(1-0,007)=18,2 мольн. %

ρ"п=Мсм"*Р"*Т0/22,4*Р0*Тw=18,2*98950*273/22,4*101300*369,1=0,59 кг/м3

Р"=Р" + ∆P=98100+850=98950 Па

Где ∆Р - сопротивление со стороны тарелки (насадки)

Где ∆Рт - сопротивление одной тарелки (насадки), принимаем 100 Па

V"с=m"n/ρ"n=0,043/0,59=0,07 м3/с

Таким образом, определим диаметр ректификационной колонны в верхнем и нижнем сечениях колонны по формуле:

D = √Vс /0,785*ωп

ωп=0,8* ωр=0,8*0,7=0,56 м/с

ωр=(0,5-0,9) м/с

Dв=√0,56/0,785*0,56=1,13 м

Dн=√0,07/0,785*0,56=0,41 м

Dср=(1,13+0,41)/2=0,76 м

Выбираем ректификационную колонну с насыпной насадкой и с распределительными тарелками типа ТСН - III и перераспределительными тарелками типа ТСН - II, диаметр колонны - 800 мм, высота сепарационной части равна 800 мм, высота кубовой - 2000 мм.

2.6 Определение высоты ректификационной колонны

Нкол = Нсеп + Нкуб + 0,5 *(nсл -1) + Hнас = 0,8+2+0,5*(2,13-1)+6,8= 2,8+0,565+6,8=10,2 м

где nсл - число слоев насадки в колонне, nсл = Hнас/hсл = 6,8/3,2=2,13

hсл - высота слоя насадки, hсл = 3…5*Dкол

5 - расстояние между слоями насадки, в котором устанавливают опорные решетки и перераспределительные тарелки, м

Hнас - общая высота насадки, м

Общую высоту насадки в колонне можно рассчитать через высоту насадки, эквивалентную одной теоретической ступени (тарелки):

Hнас=ЧТС* hэкв = 8,5*0,8=6,8 м

Где ЧТС - число теоретических ступеней

hэкв - высота, эквивалентная теоретической ступени, рассчитывается по критериальному уравнению, приводимому в справочной литературе hэкв = 0,8

2.7 Расчёт насоса для подачи исходной смеси

Расчет насоса для подачи исходной смеси:

Н - высота подъема исходной смеси в колонну (определяется по чертежу ректификационной колонны в масштабе), Н=5,1 м

η- коэффициент полезного действия, примем равным 0,75

1.Определяем диаметр трубопровода по формуле:

D=√V/0,785*υ=√0,0015/0,785*2=0,031м

Где V - объемный расход исходной смеси, м3/с:

υ- скорость движения исходной смеси, м/с принимаем 0,5 - 2 м/с

V = G/ρ=1,42/964,51=0,0015 м3/с

Где ρ- плотность исходной смеси при температуре Tf

Принимаем трубу с условным диаметром

Ориентировочно определяем мощность насоса

N=V* ρ*g*H/ 1000

*η=0,0015*964,51*9,81*5,1/1000*0,75=72,4/750=0,097 кВт

По подсчитанным данным по каталогу подобрали необходимый насос


ЗАКЛЮЧЕНИЕ

В ходе выполнения данного курсового проекта были рассчитаны материальный и тепловой балансы. Выполнен конструктивный расчёт проектируемого аппарата, в ходе которого определены основные размеры проектируемой колонны:

Диаметр колонны - 800 мм

Высота колонны -10200 мм

Вычерчена графическая часть: общий вид аппарата и технологическая схема ректификационной установки.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Плановский А.М., Рамм В.М., Каган С.З., Процессы и аппараты химической технологии. - Москва: Химия, 1968 г.

2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессы и аппараты химической технологии. - Москва: Химия, 1981 г.

Иоффе И.Л. Проектирование процессов и аппаратов химической технологии. - Ленинград: Химия, 1991 г.

Романов П.Г., Курочкина М.И., Мозжерин Ю.А., Смирнов Н.Н. Процессы и аппараты химической промышленности. - Ленинград: Химия, 1989 г.

Ректификация позволяет получить спирт высокой крепости и чистоты. Оба качества зависят от того, насколько хорошо человек, управляющий процессом, понимает его суть. Поэтому знать теорию ректификации надо каждому, кто хочет делать чистые и крепкие спиртные напитки на самогонном аппарате .

История ректификации

Начнем с процесса дистилляции, ведь именно он является предшественником ректификации. Нет точной информации о том, кто первый изобрел дистилляцию. В. Шнайдер, составитель словаря алхимических и фармацевтических терминов, считает, что данная заслуга принадлежит в первую очередь персам, которые использовали дистилляцию, чтобы получить розовую воду (эфир розы). Можно сделать вывод, что история дистилляции насчитывает более 3500 лет. Первоначально дистилляцией называли все процессы разделения смесей на компоненты. По мере их изучения процессы классифицировали и дали им наименование. Таким образом, в сейчас дистилляцией называют разделение веществ, основанное на испарении жидкости и последующей конденсации паров.


Аламбики были первыми аппаратами для дистилляции и конструкционно практически не изменились за несколько тысяч лет. Первоначально использовались, чтобы получать ароматные масла.

Наука не стояла на месте, процесс дистилляции тщательно изучался и совершенствовался. С начала XVI века наблюдалось большое количество работ по подбору испарительных кубов и системы обогрева аппаратов. Для обеспечения непрерывной работы колонны использовались водяные и песочные бани, применялись восковые свечи. Только к 1415 году впервые было предложено применять теплоизоляцию, а именно шерсть животных. В конце XVI века было выявлено преимущество водяного охлаждения конденсатора, до этого времени охлаждение было воздушным.

В период XVI по XIX век стремительно происходила модернизация аппаратурного оснащения. Исходя из инертности материалов по отношению к возгоняемым жидкостям, в перегонных кубах в качестве оптимальных использовались стекло и керамика, в дальнейшем нержавеющая сталь. В 1709 году впервые появились теории о дефлегмации (возвращении части сконденсировавшихся паров в колонну).

Результатом всех исследований и разработок стало изобретение первой ректификационной колонны непрерывного действия французскими инженерами Адамом, Бераром и Перье, получившие на нее патент в 1813 году. Она до сих пор соответствует современным ректификационным колоннам. С этого периода начинается история ректификации в науке и промышленности.

Понятие ректификации

Существуют различные определения ректификации.

Ректификация - это процесс разделения бинарных (двухкомпонентные смеси, например, спирт-вода) или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификация - разделение жидких смесей на практически чистые компоненты, отличающиеся по температуре кипения, путём многократных испарений жидкости и конденсации паров.

Несмотря на столь сложные формулировки, в процессе ректификации нет ничего трудного. Имея необходимое оборудование и базовые знания, ее с легкостью можно провести у себя на кухне.

Процесс ректификации

Э. Крель в своих трудах «Руководство по лабораторной перегонке» изложил основной принцип ректификации:

Обмен веществ (массообмен и теплообмен) происходит путем прохождения паровой смеси через наполнитель колонны.

На скорость и качество этого процесса влияют следующие факторы:

  1. Коэффициент диффузии (прохождение паровой смеси через наполнитель колонны);
  2. Концентрация возгоняемого вещества;
  3. Площадь поверхности контакта в колонне;
  4. Разность температур кипения разделяемых компонентов.

Можно сделать вывод, что процесс ректификации спирта будет лучше протекать при следующих условиях: хорошей диффузии, высокой концентрации отделяемого компонента, развитой площади контакта.

Особое внимание Крель уделил важности состояния межфазной поверхности и перечислил факторы, определяющие процесс ректификации:

  1. Свойства разделяемой смеси: летучесть компонентов, состав смеси, взаимная растворимость компонентов.
  2. Характеристика насадки: форма насадочного тела, способ укладки насадки, плотность заполнения колонны.
  3. Косвенные факторы: способ подачи жидкости в колонну, интенсивность и метод обогрева, рабочее давление.

Виды ректификационных колонн

В зависимости от применяемых контактных устройств, колонны делятся на тарельчатые и насадочные.

Тарельчатые ректификационные колонны

В основном распространены в нефтеперерабатывающей отрасли и на крупных производствах. Тарельчатые колонны представляют собой вертикальную трубу, в которой через определенное расстояние устанавливаются тарелки разной конфигурации, где идет контакт между паровой и жидкой фазами.

Недостаток колонн : дороговизна и большие габариты.

Преимущества : тарельчатая ректификационная колонна тоньше разделяет фракции.


Насадочные ректификационные колонны

На сегодняшний день широкое распространение получили насадочные колонны. Это те же вертикальные трубы, только в них устанавливается другое контактное устройство - насадка.

Насадки разделяются на два типа:

Нерегулярная - неупорядоченный слой насыпного или заполняемого инертного материала (например, спирально призматическая насадка СПН).

Преимущества : малый вес, большая площадь контакта.

Недостатки : высокое сопротивление, сложность правильного распределения паров и флегмы.


Регулярная - представляет собой скомпонованные в кассеты перфорированные сетки и листы (к ним относится регулярная проволочная насадка Панченкова (РПН).

Преимущества : высокая эффективность, малый перепад давления.

Недостатки : насадочная ректификационная колонна явных недостатков не показала.

Процессы в ректификационной колонне

Рассмотрим, что происходит в самой колонне на примере оборудования Фабрики «Доктор Губер». Здесь нет никакой магии или секретных технологий, все очень просто.

Ректификационные колонны для частного применения представляют собой вертикальные трубки диаметром от 40 до 50 мм, высотой не более 180 см, заполненные насадками РПН или СПН. Данные колонны оснащены холодильником или дефлегматором, а так же узлом отбора спирта.


Рассмотрим периодическую ректификацию на колонне насадочного типа с регулярной насадкой РПН, которую каждый сможет повторить в домашних условиях.

При нагреве куба с брагой, являющейся многокомпонентной смесью, в состав которой помимо воды и спирта входят побочные продукты брожения (альдегиды, кислоты, эфиры и т.д.), начинается процесс кипения и испарения данных компонентов. Температура начала процесса может быть разной, все зависит от качественного и количественного состава бражки или спирта-сырца. На протяжении процесса пар поднимается по колонне, начинает ее прогревать и частично конденсироваться, при этом образуется «дикую флегму».

Образование дикой флегмы происходит за счет охлаждения корпуса колонны, в связи с потерями тепла в окружающую среду. Возникают качественные и количественные потери по спирту (до 10%).

В стандартных ректификаторах проблема образования дикой флегмы решается с помощью теплоизолирования колонны.

Высококвалифицированные специалисты Фабрики Доктор Губер нашли другой способ решения данной проблемы путем создания колонны Торнадо. Структура колонны позволяет поднимающемуся пару проходить сначала по внешнему контуру колонны, создавая при этом активный подогрев. В результате потери тепла в окружающую среду от рабочей части колонны становятся минимальными. На выходе готовый продукт получается с улучшенными органолептическими и физико-химическими показателями.

После прогрева колонны пары достигают холодильника или дефлегматора, в котором они конденсируются и возвращаются в колонну в виде флегмы.

Поток флегмы направляется навстречу поднимающимся по колонне парам. Происходит массо- и теплообмен. Температура при ректификации спирта имеет ключевое значение: флегма на своем пути из зоны с низкой температурой в зону более высоких температур поглощает из потока паров высококипящие компоненты (сивушные масла) и выделяет легкокипящие компоненты (спирт). Так как процессы эти протекают на границе раздела фаз, то очень важно создать максимально возможную поверхность контакта. Для этого ректификационные колонны Доктор Губер оснащают РПН, который создает максимальную поверхность контакта по всей ее длине.

Качество получаемого спирта зависит от скорости отбора. А именно, чем больше флегмы забирается из колонны, тем хуже идет процесс массообмена, следовательно уменьшается крепость спирта на выходе из колонны. И наоборот, чем меньше забирается флегмы, тем лучше процесс массобмена и повышение крепости конечного продукта.

Для контроля скорости отбора спирта на колонны устанавливаются игольчатые краны для тонкой регулировки и смотровые стекла.

Создать развитую поверхность контакта недостаточно, необходимо ее правильно орошать. В насадочных колоннах имеет место пристеночный эффект. Флегма проходит не через насадку, а стекает по стенкам колонны, в результате чего падает эффективность ее работы. При правильном заполнении колонны этот эффект минимален, он практически отсутствует в колонне Торнадо, где устанавливается колпачковая тарелка с центральным изливом. В итоге флегма направляется ровно на насадку и достигается максимальный КПД данной колонны.

Что касается диаметра и высоты колонны, по данным Стедмана и Мак-Магона диаметр насадочных колонн оказывает незначительное влияние на качество разделяемых смесей.

Высота колонны. Речь идет о ее рабочей части (часть колонны, которая наполнена насадкой) должна быть не более (6-8)хD. Если высота больше данного выражения, то колонны заполняют секционно, чтобы избежать пристеночного эффекта.

Как выбрать ректификационную колонну

При выборе колонны обращайте внимание на следующие пункты:

  1. Материал колонны, в том числе и наполнитель, должны быть инертны по отношению к парам спирта;
  2. Колонна должна быть оснащена регулируемым узлом отбора;
  3. Наличие высокопроизводительного холодильника или дефлегматора;
  4. Обязательное присутствие атмосферного клапана для безопасной работы.

P.S. Ректификация спирта не сложный процесс и при наличии необходимого оборудования ее с легкостью можно провести в домашних условиях. К 2016 году ассортимент ректификационного оборудования безгранично возрастает. Несмотря на небольшие конструктивные отличия всех аппаратов, процесс ректификации остается неизменным и его качество будет в первую очередь зависеть от знаний и опыта человека, контролирующего процесс.

Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка (дистилляция и ректификация). В широком смысле перегонка представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получается жидкость, состав которой отличается от состава исходной смеси.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводятся обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно низкокипящий компонент (НКК), которым обогащаются пары, а из паров конденсируются преимущественно высококипящий компонент (ВКК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете пары, представляющие собой почти чистый НКК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВКК.

Ректификация является одним из важнейших технологических процессов спиртовой и нефтяной промышленности. В настоящее время ректификацию все шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты) имеет важное значение. Процессы перегонки осуществляются периодически или непрерывно при различных давлениях: при атмосферном давлении, под вакуумом (для разделения смесей высококипящих веществ), а также под давлением больше атмосферного (для разделения смесей, являющихся газообразными при нормальных температурах). Более полное, экономичное и четкое разделение смесей на компоненты достигается в процессах ректификации, проводимых в аппаратах – ректификационных колоннах.

Процесс ректификации осуществляется путем многократного контакта между неравновесными жидкой и паровой фазами, движущимися в аппарате навстречу друг к другу.

При взаимодействии фаз между ними происходит массо- и теплообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами: пар несколько обогащается НКК, а жидкость – ВКК. Многократное контактирование приводит к практически полному разделению исходной смеси.

Процессы ректификации осуществляются в аппаратах, технологическая схема которых зависит от назначения аппарата и давления в нем, а конструкция - от способа организации контакта фаз.

При ступенчатом осуществлении процесса ректификации в колонных аппаратах контакт пара и жидкости может происходить в противотоке (на тарелках провального типа), в перекрестном токе (на колпачковых тарелках), в прямотоке (струйные тарелки).

Если процесс ректификации осуществляется непрерывно во всем объеме колонного аппарата, то контакт пара и жидкости при движении обеих фаз может происходить только в противотоке. Современные ректифицирующие аппараты можно классифицировать в зависимости от технологического назначения, давления и внутреннего устройства, обеспечивающего контакт между паром и жидкостью.

По технологическому назначению ректификационные аппараты подразделяются на колонны атмосферно-вакуумных установок, термического и каталитического крекингов, вторичной перегонки нефтепродуктов, а также для ректификации газов, стабилизации легких нефтяных фракций и т.д.

К современным ректификационным аппаратам предъявляются следующие требования: высокая разделительная способность и производительная способность, достаточная надежность и гибкость в работе, низкие эксплуатационные расходы, небольшой вес и простота, техничность конструкции.

Последние требования не менее важны чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на величину, эксплутационных расходов, обеспечивают легкость и удобства изготовления аппарата, монтажа и демонтажа, ремонта, контроля, испытания, а также безопасность эксплуатации и пр.

Кроме перечисленных выше требований ректификационные аппараты должны отвечать также требованиям государственных стандартов, ведомственных нормалей и инспекций Гостехнадзора.

Технологическая схема аппарата зависит от состава разделяемой смеси, требований к качеству получаемых продуктов, от возможностей уменьшения энергетических затрат, назначения аппарата, его места в технологической цепочке всей установки и от многих других факторов.

Процесс ректификации жидких смесей осуществляется на ректификационных установках, состоящих из нескольких аппаратов. Рассмотрим принцип разделения двухкомпонентной смеси ректификацией на примере работы подобной установки (рис. 10.1). Подлежащая разделению смесь непрерывно подается в ректификационную колонну через ввод, расположенный несколько ниже середины корпуса колонны. Введенная жидкая смесь опускается по контактным устройствам (тарелкам) в нижнюю часть колонны, называемую кубом. Навстречу потоку жидкости поднимается пар, образующийся в результате кипения жидкости в кубе колонны. Образующиеся пары содержат в основном НКК и некоторое количество ВКК. При взаимодействии пара с жидкостью на тарелках колонны ВКК конденсируется и уносится вниз колонны потоком жидкости. За счет этого в поднимающихся парах возрастает количество НКК . Таким образом, при подъеме паров они обогащаются НКК , в то время как жидкость, стекающая вниз, обогащается ВКК .

Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси. Стекая вниз по колонне, жидкость взаимодействует с под­нимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обо­гащается легколетучим компонентом

Рис. 10.1. Принципиальная схема ректификационной установки:

1 - ёмкость для исходной смеси; 2, 9 - насосы; 3- теплообменник- подогреватель исходного сырья; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости.

Для более полного обо­гащения верхнюю часть колонны орошают в соответствии с за­данным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из де­флегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и напра­вляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят с высоким содержанием легко­летучего компонента и кубовой остаток, обогащенный трудно­летучим компонентом.

Ректификацию многокомпонентных смесей, а они в практике встречаются чаще, чем двухкомпонентные, протекает по рассмотренной выше схеме, хотя число используемой при этом аппаратуры увеличивается.

В ректификационных установках используют главным образом аппараты двух типов: колонны со ступенчатым контактом фаз (тарельчатые) и непрерывным контактом (пленочные и насадочные).

Ректификацию многокомпонентных смесей можно проводить в различной последовательности, с использованием многих простых колонн (на одну меньше числа компонентов исходной смеси) и с использованием одной сложной колонны.

Для процесса ректификации в основном применяют тарельчатые колонны. В них устанавливают горизонтальные тарелки с устройствами, обеспечивающими хороший контакт между жидкостью и паром.

Диаметр колонны определяют в зависимости от производительности установки и скорости паров в колонне, которую выбирают в пределах 0,6 - 1,0 м/с . Находят применение ректификационные колонны различных размеров: от небольших колонн диаметром 300 - 400 мм до высокопроизводительных установок, с колоннами диаметром 6, 8, 10, 12 м и более.

Высота колонны зависит от числа тарелок и расстояния между ними. Чем меньше расстояние между тарелками, тем ниже колонна. Однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность переброса жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Расстояние между тарелками обычно принимают в зависимости от диаметра колонны с учетом возможности ремонта и чистки колонны. Рекомендуемые расстояния между тарелками ректификационных колонн в зависимости от их диаметра приведены ниже:

Диаметр колонны, мм до 800, 800 - 1600, 1600 - 2000

Расстояние между тарелками, мм 200 -350, 350 - 400, 400 - 500

Диаметр колонны, мм от 2000 - 2400 и свыше 2400

Расстояние между тарелками, мм 500 - 600, свыше 600.

Число тарелок ректификационной колонны или высота насадки определяются технологическим расчетом; оно зависит от физико-химических свойств разделяемых компонентов, требуемой чистоты разделения и к.п.д. тарелки. Обычно ректификационные колонны имеют 10 - 30 тарелок, но колонны для разделения смесей с близкими температурами кипения насчитывают сотни тарелок и имеют соответственно высоту до 30 - 90 м .

Ректификационные колонны работают обычно при атмосферном или небольшим избыточным давлением. Ограниченное применение находят вакуумные колонны и колонны, работающие при повышенном давлении. Ректификацию под вакуумом применяют в том случае, когда хотят снизить температуру в колонне, что бывает необходимо при разделении компонентов с высокой температурой кипения или веществ, нестойких при высокой температуре. Ректификацию под повышенным давлением используют для разделения сжиженных газов и легколетучих жидкостей.


Похожая информация.


1. Откуда берется спирт как химическое вещество

Этиловый спирт (этанол, винный спирт) - C 2 H 5 OH - бесцветная жидкость с характерным запахом. Получается сбраживанием пищевого сырья, гидролизом растительных материалов и синтетически - гидратацией этилена. Очищается ректификацией.
Синтетический путь получения этанола достаточно сложен, а результатом является технический спирт-ректификат, содержащий большое количество не отделяемых ректификацией примесей. Этот путь широко применяется в промышленности.
Другой путь получения спирта более доступен и связан с технологией сбраживания простых сахаров дрожжами. Именно так получается обычное вино и именно поэтому первое имя этилового спирта - винный спирт. Химическая формула этого превращения в очень упрощенном виде выглядит так:

C 12 H 22 O 11 + Н 2 0 = 4 C 2 H 5 OН + 4 СО 2 + ТЕПЛО

Т.е. из одной молекулы сахара с помощью дрожжевых клеток образуется две молекулы этилового спирта, две молекулы углекислого газа и выделяется приличное количество тепла.
Для определения соотношения массовых превращений достаточно подставить в предыдущую химическую формулу мольные массы атомов: водорода Н=1, углерода С=12 и кислорода О=16 :

(12·12+1·12+16·11)+ (1·2+16)= 4 ·(12·2+1·5+16+1) + 4·(12+ 16·2),
или 342 + 18 = 184 + 176 ;

и тогда можно сделать вывод, что из 180кг сахара получается 92кг спирта и 88кг углекислого газа. Таким образом, теоретический выход спирта из сахара составляет 0.511кг/кг, а учитывая плотность этилового спирта (ρ = 0,8кг/л), будет равен 0,64л/кг.
Если спирт получают не из сахара, а из сахаросодержащего сырья (виноград, сахарная свекла, топинамбур и т.д.), тогда, зная сахаристость продукта, легко определить выход из него спирта. Так, например, если яблоки содержат 12% сахара, то теоретический выход спирта из сока этого сырья (выход сока из яблок составляет 70%) будет равен 54мл/кг:

1кг (яблоки) =>0.7 кг (сок) => 0.084кг (сахар) => 0.054л (спирт).

Чаще всего спирт получают из крахмалосодержащего сырья (картофель, зерно и т.д.). Тогда в технологической цепочке приготовления спирта появляется процесс осахаривания крахмала - превращение (гидролиз) крахмала сырья под воздействием определенных ферментов в сахар

(C 6 H 10 O 5)n + n·H 2 O + ФЕРМЕНТ = n·C 6 H 12 O 6 ,

а затем производится его сбраживание.
Как и в предыдущем случае можно рассчитать, что из 1кг крахмала теоретически получается 1,11кг сахара. Зная содержание крахмала в сырье можно легко определить выход спирта из того или иного продукта. Так, например, если в пшенице содержится 60% крахмала, то теоретический выход спирта из такого зерна составит 0,426л/кг:

1кг (пшеница) => 0,6 кг (крахмал) => 0,666кг (сахар) => 0,426л (спирт).

Практический выход спирта всегда на 10…15% меньше теоретического. Такие потери считаются нормальными и, главным образом, связаны с:
недобродом, то есть с ситуацией, когда часть сахара остается в бражке и не превращается в спирт;
неправильным брожением, то есть когда часть сахара превращается не в спирт, а в некоторые другие вещества примеси;
прямыми потерями, когда часть спирта просто улетучивается вместе с углекислым газом в процессе брожения, или теряется при перегонке и ректификации.

2. Теплофизические свойства водно-спиртовых растворов.

Свойства абсолютизированного 100% этилового спирта (ЭС) с практической точки зрения мало интересны (tкип=78,3°C при 760мм.рт.ст., ρ=790κг/м3 ). Поэтому, здесь мы разберемся со свойствами бинарной (двойной) смеси ЭС + вода, дающими полное представление о работе ректификационного оборудования и получения на нем этилового спирта-ректификата.

2.1 Концентрация спирта.

Всем известно, что ЭС очень хорошо растворяется в воде образуя бинарную водно-спиртовая смесь (раствор), которая может содержать в себе любое количество спирта.
В случае использования тех или иных справочных данных необходимо четко различать два понятия концентрации спирта в водно-спиртовом растворе - массовая и объемная концентрации. Массовая концентрация спирта используется только для физических расчетов, анализа процессов горения и др. Массовая концентрация - это масса спирта в массе раствора (обозначается как % масс. , или кг/кг, или г/г). Чаще и традиционно используется понятие объемной концентрации спирта - это объем спирта в объеме раствора (обозначается как % об. , или м3/м3 , или л/л, или мл/мл). Эта некоторая “путаница” в концентрациях возникает из-за разной плотности спирта (ρ=790κг/м3=0,79г/мл ) и воды (ρ=1000κг/м3=1г/мл ). Разница в цифрах объемной и массовой концентраций одного и того же раствора существенна, поэтому далее мы будем пользоваться только понятием объемной концентрацией спирта.
Для определения объемного содержания спирта в растворе - концентрации спирта в жидкости (X ) используются специальные спиртометры: АСП-3 0…40%, АСП-3 40…70%, АСП-3 70…100%, АСП 95…105%, АСП-2 96…101%, с термометром АСПТ 60…100%. Стоит отметить, что плотность водно-спиртового раствора сильно зависит от его температуры, а все эти приборы измеряют именно плотность раствора (используют силу Архимеда). Поэтому реальное содержание спирта в растворе совпадает с показаниями этих приборов только при 20ºC, что и указано на шкалах этих приборов.
Наиболее известными растворами являются водка - 40% и спирт-ректификат - 96,4%. Кстати, содержание спирта в бражке находится в пределах 7…12%, но измерять эту концентрацию с помощью спиртометров нельзя из-за наличия в бражке остаточного сахара и других примесей, влияющих на плотность раствора, и соответственно, искажающих показания прибора.
Пары ЭС также хорошо растворяются и в парах воды и образуют с ними единую паровую смесь с концентрацией спирта в них Y , которую можно определить только после конденсации этих паров - т.е. в жидкости (как в предыдущем случае) или по температуре их парообразования при 760мм.рт.ст. (см. ниже).

2.2 Температура кипения водно-спиртовой смеси.

Естественно, температура кипения раствора двух веществ - воды (tкип=100°C при 760мм.рт.ст) и этанола (tкип=78,3°C при 760мм.рт.ст) должна находится между температурами кипения индивидуальных веществ. Зависимость температуры насыщенного водно-спиртового пара или температура кипения (парообразования) этой бинарной смеси от концентрации спирта в парах Y представлена на рис.1.
Стоит обратить внимание, что на этом графике существует некоторая точка А с концентрацией 96,4% температура в которой даже меньше температуры кипения 100%-го этанола.

Рис.1 Температура насыщенного водно-спиртового пара или температура кипения водно-спиртовой смеси (при давлении 760 мм рт.ст.)

2.3 Равновесие фаз.

Равновесным состоянием фаз (жидкой и парообразной) называется такое их сосуществование, при котором не происходит никаких видимых качественных или количественных изменений этих фаз. Равновесие фаз считается достигнутым только в том случае, когда одновременно удовлетворяются два условия: равны температуры фаз и равны парциальные давления каждого компонента в паровой и жидкой фазах. Второе условие означает, что процесс перехода через границу раздела фаз каждого компонента из жидкой фазы в паровую фазу и обратно завершен. Т.е. составы жидкой и паровой фазы стабилизировались, а концентрации компонентов в отдельно взятой фазе одинаковы в каждой точке ее объема.
Для бинарной водно-спиртовой смеси это теоретическое высказывание означает очень простую вещь. Если в обычную колбочку (схематично нарисована внутри графика рис.2) налить небольшое количество водно-спиртовой смеси с концентрацией и нагреть до температуры кипения этой смеси, то в образовавшемся паре концентрация спирта будет Yп . Затем, если быстро закрыть колбочку и интенсивно встряхнуть (перемешать паровую и жидкостную фазы), то температура внутри колбочки выровняется, а пар и жидкость придут в равновесное состояние - с концентрациями в них спирта Y и X соответственно.
Если такие опыты провести для разных концентраций водно-спиртовых растворов, то можно получить некоторую зависимость равновесия фаз - кривая равновесия фаз. График кривой равновесия фаз для бинарной смеси чистый спирт + чистая вода представлен на рис.2.


Рис.2 Кривая равновесия фаз бинарной водно-спиртовой смеси (при давлении 760 мм рт.ст.)

Теоретическая и практическая значимость кривой равновесия фаз с точки зрения процесса ректификации спирта очень велика, но к этому мы вернемся позднее в разделе “Ректификация”, а сейчас покажем, как этой кривой пользоваться.
Например, при обычной перегонке бражки с концентрацией спирта X= 10%образуется пар с концентрацией в нем спирта Y =42%, а после его конденсации мы получаем “самогон” (конденсат, дистиллят) той же “крепости”. Таким образом, если самогонный аппарат не снабжен какими-нибудь дополнительными “прибамбасами”, то получить более крепкий самогон таким способом теоретически просто невозможно. Таким же образом можно “предугадать” с помощью той же кривой и результат повторной перегонки “первача” - из 40%-го дистиллята второй перегонкой можно получить 60%-ый “самогон”.
Рассматривая этот график, стоит обратить внимание на диагональ Y=X. Именно благодаря тому, что почти вся кривая равновесия лежит выше этой диагонали, можно при испарении водно-спиртовой смеси получать концентрацию спирта в парах большую, чем его концентрация в исходной жидкости. Исключением является только точка А - пересечение кривой равновесия с диагональю, где X=Y=96,4%. Это особая точка азеотропы.
Азеотропными или нераздельно кипящими называют смеси, у которых пар, находящийся в равновесии с жидкостью, имеет тот же состав, что и жидкая смесь (X=Y ). При перегонке азеотропных смесей образуется конденсат того же состава, что и исходная смесь. Разделение таких смесей перегонкой и ректификацией исключается.
Водно-спиртовая смесь в особой точке азеотропы называется “этиловый спирт-ректификат (СР)”. Именно к этой точке стремится процесс ректификации, именно она является предельной концентрацией спирта в этом процессе, и именно в этой точке водно-спиртовая смесь имеет минимальную температуру кипения (tкип=78,15°C при 760мм.рт.ст. см. рис.1).

2.4 Основные свойства спирта-ректификата

На этот продукт существует ГОСТ 5962-67, в котором регламентируется концентрация спирта в спирте-ректификате от 96% до 96,4% и его состав.
Приведем некоторые физические свойства этилового спирта-ректификата
Плотность жидкости (при 20ºС)…………….……….…. 812 кг/м3 (≈0.8кг/л)
Плотность паров (при 760 мм.рт.ст.)………….……….. 1,601 кг/м3
Температура кипения (при 760 мм.рт.ст)……………… 78,15 ºC
Удельная теплота парообразования……………………. 925 кДж/кг
Эти данные являются основой при проектировании спиртового ректификационного оборудования. А для Вас будут являться обычной справочной информацией.

2.5 Температура кипения спирта-ректификата и атмосферное давление.

Стоит отметить, что температура кипения СР существенным образом зависит от атмосферного давления. Причем эта зависимость настолько сильная (см. рис.3), что при ректификации спирта по температуре, регистрируемой, например, электронным термометром, можно определить точное значение атмосферного давления в данный момент и проградуировать обычный домашний барометр, пользуясь приведенной ниже зависимостью.


Рис.3 Зависимость температуры кипения этилового спирта-ректификата от атмосферного давления

Если Вы эксплуатируете ректификационную установку без термометра, то эта информация просто расширяет Ваш кругозор и не имеет для Вас никакого практического значения, поскольку момент выхода СР Вы с абсолютной точностью определяете по запаху. Но, для тех, кто приобрел установку с электронным термометром, эта связь температуры кипения спирта с атмосферным давлением имеет непосредственное практическое значение.
Действительно, имея профессиональное ректификационное оборудование и электронный термометр, способный с высокой точностью определять температуру спиртовых паров, Вы с удивлением можете обнаружить, что его показания отличаются изо дня в день. Если вчера Вы наблюдали температуру кипения спирта 77,0ºC, а сегодня - 78,0ºC, то это означает не изменение спиртового состава или неисправность ректификационного устройства, а всего лишь изменение атмосферного давления: вчера было - 730мм.рт.ст., а сегодня - 755мм.рт.ст.

3. Теория и практика простой перегонки бражки.

Простая перегонка (дистилляция) - процесс, при котором происходит однократное испарение наиболее летучих компонентов из кубовой жидкости и однократная конденсация этих паров.

3.1 Цель простой перегонки

Содержание спирта в бражке очень мало от 6 до 12%. Однако, для получения высококачественного спирта путем ректификации требуется более концентрированный спиртовой раствор, поэтому для получения спирта-рекитификата на всех спиртовых заводах производят первоначальное, грубое отделение спирта от воды, в результате которого получают спирт-сырец (СС), а затем проводят его ректификацию. Такой же путь можно рекомендовать для домашней технологии приготовления спирта.
Перегонку бражки можно проводить и с помощью ректификационного оборудования (см. ниже). Используя при перегонке бражки ту же технику ректификации, можно из бражки сразу получить 80…85% -ый СС. Но это не нужно, поскольку для четкой ректификации СС, его все равно необходимо будет разбавить до концентрации 40%. Более того, перегоняя бражку на ректификационном устройстве, очень часто пеной засоряется нижняя часть колонны.
Для более эффективного использования ректификационной колонны, все таки на ней лучше проводить ректификацию, а 40%-ый самогон можно успешно получать из бражки с помощью простейшего перегонного аппарата.

3.2 Оборудование для простой перегонки

Принципиальная схема простого дистиллятора представлена на рис.4. Дистиллятор состоит из испарительной емкости - куба 1 и конденсатора-охладителя 2, которые соединены между собой патрубком 3. Куб заполнен перерабатываемой жидкостью 4, нагрев и испарение которой осуществляется нагревателем 5. Через конденсатор-охладитель постоянно протекает охлаждающая вода (показана стрелочками). Для удобства работы с дистиллятором в крышке куба может быть установлен термометр 6, который регистрирует температуру паров направляющихся на конденсацию. Приемная емкость 7.

3.3 Работа аппарата простой перегонки

Дистиллятор работает следующим образом. С помощью нагревателя кубовая жидкость доводится до кипения. Образовавшийся в кубе пар по патрубку попадает в конденсатор-охладитель, где происходит его конденсация и охлаждение. Полученный дистиллят стекает в приемную емкость 7.
Что касается дистилляции спирта, то при работе этого устройства, процесс получения дистиллята в основном подчиняется приведенной выше кривой фазового равновесия (рис.2). Причем в начальный момент, когда концентрация спирта в растворе велика (в бражке она составляет 10…12%), велика и концентрация спирта в парах, а следовательно, и в его дистилляте (42…45%). Однако, бражка не является бинарной смесью воды и спирта, а содержит большое количество попутных примесей с меньшей и большей температурой кипения по отношению к водно-спиртовой смеси. Температура паров спирто-водяной смеси, проходящей в этот момент по патрубку, составляет величину порядка 90…94°С, но легкокипящие примеси (эфиры, ацетоны, альдегиды, метиловый спирт и др.) в большей доле входят в состав первоначального пара, понижая эту теоретическую температуру до 65…75°C. Увеличенная концентрация легкокипящих примесей (плотность которых меньше плотности спирта) в первоначальном дистилляте искажает показания спиртомера в большую сторону, создавая иллюзию повышенной “крепости”. Именно поэтому первая порция дистиллята, полученная из бражки, называется “первачём”. В действительности это не концентрированный спирт, а водно-спиртовая смесь с повышенной концентрацией “отравы”.
На следующем этапе перегонки изменение температуры в большей степени соответствует теории. Используя показания термометра 6 и пользуясь графиком рис.1, можно всегда знать концентрацию паров спирта Y, идущих на конденсацию. Постепенно концентрация спирта в кубе уменьшается, соответственно уменьшается и его концентрация в дистилляте, что отмечается увеличением температуры на термометре 6. Если температура достигла 100°С, то это означает, что спирт в кубовой жидкости полностью закончился и из куба испаряется только вода.
Несмотря на то, что вблизи нулевой точки (рис.2) концентрация спирта в парах в 8 раз больше его концентрации в жидкости, процесс перегонки обычно завершают при температуре пара 97…98°C. Это связано с тем, что с этого момента начинается более интенсивное испарение сивушных масел и других хвостовых примесей.
Средняя концентрация спирта в дистилляте (типичный “самогон”), получаемого из бражки с помощью аппаратов простой перегонки, обычно не превышает 40%. Типовой график изменения температуры по времени при простой дистилляции схематично представлен на рис.5.


Рис.5 Изменение температуры паров при простой перегонке

Можно повторно провести перегонку уже 40%-го дистиллята и получить более концентрированный ≈ 60% раствор спирта (см. рис.2). Затем можно многократно повторять этот процесс до получения концентрации спирта в дистилляте около 90…94%. Однако, стоит сразу обратить Ваше внимание на то, что полученный таким образом “спирт” будет содержать все примеси изначально содержащиеся в бражке. Это означает, что после разбавления такого “спирта” водой до 40% Вы получите все тот же “самогон”, что и после первой перегонки.
При таком способе извлечения спирта из бражки с целью получения качественной водки требуются сложные, порой очень дорогостоящие и протекающие с большими потерями спирта и электроэнергии каскады очисток и повторных перегонок.
Именно поэтому этот путь получения качественной водки давно отошел в историю!
В настоящий момент существует другой, более простой способ получения высококачественной водки, суть которого, заключается в получении из СС (“самогона”) сразу 96%-го спирта-ректификата, очищенного от примесей, а затем разбавлении его хорошей водой до концентрации водочного раствора. Этот способ требует специального и достаточно сложного ректификационного оборудования.

4. Теория ректификации

Ректификация - тепломассообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами (насадка, тарелки). В процессе ректификации происходит непрерывный обмен между жидкой и паровой фазой. Жидкая фаза обогащается более высококипящим компонентом, а паровая фаза - более низкокипящим. Процесс тепломассообмена происходит по всей высоте колонны между стекающим вниз дистиллятом, образующимся наверху колонны (флегмой), и поднимающимся вверх паром. Чтобы интенсифицировать процесс тепломассообмена применяют контактные элементы, увеличивающие поверхность взаимодействия фаз. В случае применения насадки, флегма стекает тонкой пленкой по ее развитой поверхности. В случае применения тарелок, пар в виде множества пузырьков, образующих развитую поверхность контакта, проходит через слой жидкости на тарелке.

4.1 Цель ректификации

Целью ректификации вообще является чёткое разделение жидких смесей на отдельные чистые компоненты.
При ректификации спирта основная задача - из 40%-го СС получить СР с концентрацией в нем ЭС не менее 96% при минимальным содержании посторонних примесей. Для этого процесс ректификации СС проводят за один раз на специальном ректификационном оборудовании. Это оборудование позволяет разделять водно-спиртовую смесь на отдельные азеотропные фракции, отличающиеся температурами кипения. Одной из таких фракций является пищевой спирт-ректификат.

4.2 Оборудование для ректификации

В промышленности применяются ректификационные установки непрерывного действия. В этих установках 85%-ый СС и перегретый водяной пар смешиваются в нижней части колонны и превращаются в ≈ 40%-ый водно-спиртовой насыщенный пар при температуре ≈ 94°C (см. рис.1). Эта паровая смесь непрерывно поступает в ректификационную колонну, расслаивается по ее высоте на отдельные фракции, которые непрерывно и с определенным темпом отбираются из разных частей колонны. Для обеспечения нормальной работы таких непрерывных колонн требуются достаточно сложные и дорогие элементы автоматики.
В химических и физических лабораториях обычно применяют ректификационные колонны периодического действия, не требующие никакой автоматики. Эти колоны оборудованы только элементарными средствами регулировки отбора, температурного контроля и манометрическим измерителем перепада давления на колонне.
Принципиальная схема периодической ректификационной установки представлена на рис.6. Установка состоит из испарительной емкости - куба 1 и ректификационной колонны, установленной вертикально на крышке куба. Куб заполнен перерабатываемой жидкостью 4, нагрев и испарение которой осуществляется нагревателем 5. Колонна включает в себя ректификационную часть 9 и головку колонны 10. Ректификационная часть колонны представляет собой трубу 11, покрытую снаружи теплоизоляцией 12 и заполненную внутри контактными элементами 13. Головка колонны представляет собой систему патрубков 3 к которой в соответствии со схемой подсоединены: термометр 6, конденсатор 2, охладитель 14 и регулятор отбора 15. Внизу ректификационной части колонны обычно монтируется манометрическая трубочка 16 для измерения перепада давления в колонне. Через охладитель 14 и конденсатор 2 постоянно протекает охлаждающая вода.

4.3 Работа ректификационной колонны.

Ректификационная установка работает следующим образом. С помощью нагревателя кубовая жидкость доводится до кипения. Образующийся в кубе пар по ректификационной части колонны 9 поднимается вверх и попадает в конденсатор 2, где происходит его полная конденсация. Часть этого конденсата (флегмы) возвращается в ректификационную часть колонны, а другая часть проходит через охладитель 14 и в виде дистиллята 7 стекает в приемную емкость 8. Соотношение между расходами флегмы и отбираемого дистиллята называется флегмовым числом и устанавливается с помощью регулятора отбора 15. По всей высоте ректификационной части колонны происходит процесс тепломассообмена между стекающей вниз флегмой и поднимающимся вверх паром. В результате этого в головке колонны накапливается в виде пара и флегмы самый легкокипящий (с наименьшей температурой кипения) компонент кубовой жидкости, а следом за ним сама собой выстраивается “номерная очередь” (вниз по высоте колонны) из разных веществ. “Номером” в этой очереди является температура кипения каждого компонента, возрастающая по мере опускания по колонне. С помощью регулятора 15 осуществляется медленный и последовательный отбор этих веществ в соответствии с их очередностью. “Номер” отбираемого в каждый момент вещества регистрируется с помощью термометра 6. Зная эту температуру с учетом атмосферного давления, можно достаточно точно указать основное вещество дистиллята, отбираемое в данный момент времени.
Для пояснения приведем простейший и наглядный пример лабораторной ректификации. Нальем в испарительную емкость ацетон (20мл), метиловый спирт (30мл), этиловый спирт (50мл) и воду (100мл). Общее количество кубовой жидкости составит 200мл. Проведем ректификацию с записью текущей температуры и текущего объема получаемого дистиллята 7. Общий объем отобранного дистиллята доведем до 120мл, при этом остаток кубовой жидкости (воды) составит 80мл. По записям построим график изменения температуры от текущего объема дистиллята рис.7. На графике отчетливо видны четыре горизонтальных участка α (tк=const ) и три переходных участка β между ними. Участки α - это индивидуальные чистые компоненты исходной смеси, а переходные участки β - это промежуточные вещества, состоящие из смеси двух чистых соседних компонентов. Пусть процесс ректификации проходил при атмосферном давлении 760мм.рт.ст., тогда по “высоте” и “длине” каждой ступеньки можно легко сделать вывод о качественном и количественном составе исходной смеси:

В процессе ректификации каждые индивидуальные и промежуточные вещества можно отбирать в отдельные приемные емкости 8, что позволяет не только провести качественный и количественный анализ исходной смеси, но и получить все ее компоненты раздельно.


Рис.7 Изменение температуры при ректификации 4-х компонентной жидкости

4.4 Что такое “теоретическая тарелка” и сколько их нужно.

Рассмотрим более внимательно кривую равновесия фаз бинарной водно-спиртовой смеси, представленную на рис.2. Как было указано в примере, можно из 10%-го спиртового раствора с помощью простой перегонки получить 40%-ый раствор. Затем из 40%-го раствора тем же способом можно получить 60%-ый раствор.
Легко построить на кривой равновесия фаз ряд последовательных ступенек 10-40; 40-60; 60-70; 70-75; и т.д. и убедиться в том, что для достижения в конечном дистилляте концентрации спирта, равной 96%, теоретически потребуется не менее 9…10 таких последовательных перегонок.
Каждая такая перегонка-ступенька условно называется теоретической тарелкой (ТТ). Количество ТТ физически означает количество перегонок, необходимых для получения 96%-го спирта из его 10%-го раствора чистого спирта в чистой воде.
Теоретическую тарелку иногда (а в настоящее время все чаще) называют единицей массопереноса или единицей переноса (ЕП).
На практике мы никогда не имеем чистой смеси спирта с водой (если это не хорошая водка). На практике, единственным источником спиртосодержащей жидкости для получения спирта-ректификата является бражка или самогон. Оба этих раствора кроме воды и спирта содержат в себе небольшое (по объему) количество примесей. Однако в этих примесях обнаружено порядка 70 разнообразных компонентов, температура кипения которых находится вблизи температуры кипения спирта-ректификата. Более того, многие из этих примесей с “большим удовольствием” образуют со спиртом и водой многокомпонентный азеотроп спирта-ректификата с ухудшенными вкусовыми свойствами.
Опыт показывает, что для получения качественного спирта из указанных выше “первоисточников” необходимо иметь не менее 25…30 ТТ или, что одно и то же, - 25…30 ЕП.

4.5 Физическая тарелка и чем она отличается от теоретической.

В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой (ФТ) . Назначение такой тарелки, как и любого другого контактного устройства, - обеспечить наиболее тесное соприкосновение жидкой и паровой фаз для максимального достижения состояния равновесия между ними.
Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью проходит через слой флегмы, находящейся на тарелке. В результате такого “пробулькивания”, тепломассообмен между жидкой и паровой фазами интенсифицируется. Однако после прохода пара через одну тарелку равновесие между фазами не достигается. Мерой отличия состояния паровой и жидкостной фаз от их равновесного состояния является коэффициент полезного действия (КПД) тарелки.
У классических тарелок КПД составляет порядка 50-60%. Т.е. для достижения состояния равновесия фаз, соответствующего одной ТТ, потребуется около двух ФТ. Таким образом для реализации в ректификационной колонне 40 ТТ потребуется установить в ней порядка 80 ФТ классической конструкции.

4.6 Насадка и где в ней “теоретические тарелки”.

Для успешного взаимодействия флегмы, стекающей вниз по колонне, и пара, движущегося вверх, можно использовать любые другие контактные элементы, увеличивающие площадь и эффективность этого взаимодействия.
Для ректификационных колонн сверхмалого диаметра (10-30мм) более эффективным, по сравнению с тарелкой, контактным элементом является насадка. Насадка заполняет собой весь внутренний объем ректификационной части колонны. Существует множество различных типов насадок, например, регулярные насадки - Спрейпак, Зульцер, Стедман; хаотичные (насыпные) - керамические кольца Лессинга, Паля, Берля, наиболее распространенная - проволочная спирально-призматическая насадка.
Процесс тепломассообмена на таких контактных элементах проходит непрерывно, а состояние фазового равновесия, эквивалентное одной ТТ, наступает после преодоления паром некоторой высоты насадки. И тогда обычно говорят о высоте слоя насадки, эквивалентного одной ТТ, т.е. для насадочных колонн обычно употребляют понятие - высота теоретической тарелки ВТТ или высота единицы переноса ВЕП (в настоящее время употребляется чаще).
Эту высоту обычно оценивают в миллиметрах, что позволяет легко сравнивать эффективность той или иной насадки по ее ВЕП и рассчитывать высоту всей ректификационной части колонны. Так, например, при внутреннем диаметре колонны 30мм у спирально-призматической насадки ВЕП равна 20…25мм, а у насадки типа Зульцер ВЕП равна 15…20мм.
У насадок высота единицы переноса сильно зависит от диаметра колонны и стремительно увеличивается при его увеличении. Именно поэтому столь эффективные насадочные контактные элементы практически не применяются в больших промышленных ректификационных установках, а нашли свое применение исключительно в лабораторном оборудовании.
Внешний вид этого малоизвестно контактного элемента многими воспринимается как некоторый фильтр, который обязан иметь определенный срок службы в колонне. Однако это не так. Насадка - это тепломассообменный контактный наполнитель колонны, по которому вниз стекает чистый дистиллят, а вверх поднимается чистый пар. Таким образом, если оба этих компонента действительно не имеют в себе посторонних включений (в колонну не попадает пена из кубовой жидкости), то этот “фильтр” выполняет свои функции тепломассообмена неограниченно долго внутри колонны.

4.7 Пропускная способность колонны. Захлебывание колонны.

Какие бы контактные элементы не применялись в колонне, схема работы ректификационной колонны остается неизменной - флегма течет вниз, а пар движется вверх.
При таком движении фаз существует некоторая предельная скорость пара, при которой гравитационные силы, обеспечивающие движение флегмы вниз, не в состоянии преодолеть встречный скоростной напор пара. Т.е. при увеличении скорости пара флегма сначала замедляет свою скорость течения вниз, а затем просто останавливается (повисает в колонне) и начинает накапливаться в ее ректификационной части. Происходит захлебывание колонны .
Захлебывание колонны является нерасчетным режимом ее работы. В таком состоянии колонна может находиться не более 30…60 секунд. За это время флегма сначала заполняет внутреннюю полость ректификационной части колонны, потом дефлегматор, а затем происходит ее аварийный выброс из колонны через верхний штуцер дефлегматора. Захлебывание колонны можно определить по перепаду давления в колонне, или можно отчетливо услышать как специфический “булькающий” шум в колонне. Чтобы избежать захлебывания ректификационной установки надо четко следовать рекомендациям по эксплуатации, изложенным в паспорте на каждую установку.
Предельную скорость пара определяют сами контактные элементы, загромождающие внутреннее сечение колонны. У разных контактных элементов есть своя предельная скорость спиртового пара в полном сечении колонны, которая находится в диапазоне 0,5…1,2м/с. Это является и максимальной пропускной способностью колонны, которая обычно выражается массовым расходом пара (кг/час) через единицу площади полного сечения колонны (м2). Её величина для разных контактных элементов находится в диапазоне 2000…7000(кг/ч)/м2.
Колонну с теми или иными контактными элементами можно “нагружать” и меньшим потоком пара. Однако, максимальная эффективность многих контактных элементов (КПД тарелки и ВЕП насадки) реализуется при работе колонны вблизи состояния захлебывания. Поэтому все ректификационные колонны проектируют на рабочий режим, максимально приближенный к предельной пропускной способности колонны.
Массовый расход паров спирта (при теплоте парообразования СР 925кДж/кг), проходящий через колонну, полностью определяется мощностью, подведенной к испарительной емкости. Так, например, при технологической мощности в 1кВт будет образовываться следующее количество паров спирта в единицу времени:

Поэтому на этапе ректификации колонна нагружается только той технологической мощностью (Wт) , которая указана в паспорте на Вашу установку. Если Вы увеличите подводимую мощность, Вы увеличите количество испаренного спирта, а, следовательно, увеличите скорость его паров по колонне. В результате произойдет захлебывание колонны со всеми вытекающими отсюда последствиями.
Стоит отметить, что захлебывание колонны может наступить и при номинальной (правильной) технологической мощности, подведенной к испарительной емкости. Существуют только три причины такому нестандартному поведению колонны.
Первая причина - это или засорение нижней части колонны пеной, например, от бражки или переполнение испарительной емкости перерабатываемой жидкостью. Это является прямым нарушение инструкции по эксплуатации, о заполнении испарительной емкости.
Вторая причина - это повышенное напряжение в сети (более 230В), что приводит к увеличению тепловой мощности технологического ТЭНа.
Третья причина - это сильное понижение атмосферного давления или попытка эксплуатации колонны в высокогорной местности. На эту причину стоит обратить особое внимание.

4.8 Атмосферное давление и устойчивая работа колонны.

Работа колонны рассчитана на внутреннее давление в колонне 720…780мм.рт.ст. А т.к. колонна обязательно имеет связь с атмосферой через верхний штуцер дефлегматора, то это давление является и оптимальным атмосферным давлением для ее работы. Разберёмся, как атмосферное давление может влиять на работу колонны и как управлять работой колонны в высокогорной местности.
Как было указано в примере предыдущего раздела (о захлебывании колонны) 1кВт тепловой мощности испаряет 3,89кг/час паров спирта. Этот массовый расход пара при нормальном давлении 760мм.рт.ст. (плотность паров спирта - 1,6кг/м3) соответствует вполне определенному объемному расходу - 2,43м3/ч, который через полное сечение колонны (например, Ф30мм) проходит со скоростью 0,96м/с. Если атмосферное давление падает до 700мм.рт.ст., то плотность паров спирта уменьшается до 1,47кг/м3, объёмный расход пара возрастает до 2,64м3/ч, и, соответственно, увеличивается его скорость в полном сечении колонны до 1,04м/с. Если эта скорость является предельной, то произойдёт захлебывание колонны.
При увеличении атмосферного давления наоборот происходит уменьшение скорости спиртовых паров, что несколько снижает эффективность разделения колонны, но это легко компенсируется регулировкой флегмового числа (см.ниже).
При проектировании колонн закладываются определенные “запасы” в ее конструкцию для обеспечения устойчивой и оптимальной работы колонны с учетом точности изготовления контактных элементов, технологических ТЭНов (разбросов их мощности) возможного изменения атмосферного давления и прочее. Однако каждая ректификационная колонна обладает некоторой “индивидуальностью” и “норовом”, которые Вам необходимо почувствовать и правильно использовать.
Если порог захлебывания по атмосферному давлению Вашего конкретного экземпляра колонны лежит существенно ниже минимально- возможного давления в Вашей местности, Вы можете никогда не столкнуться с этой проблемой. Если такое будет изредка происходить, то можно рекомендовать Вам не проводить ректификацию в дни очень низкого атмосферного давления.
Если эксплуатация ректификационной колонны будет происходить только в высокогорной местности, то необходимо использовать ЛАТР (лабораторный автотрансформатор регулируемый) или любой другой регулятор напряжения для управления темпом испарения кубовой жидкости.

4.9 Перепад давления в колонне и как его измерять.

При расчетном режиме работы колонны внутренние контактные элементы оказывают расчетное сопротивление движению паров спирта по колонне. Т.е. в нижней части колонны давление выше, чем в верхней ее части (дефлегматоре). А поскольку давление в дефлегматоре равно атмосферному, то обычно говорят о перепаде давления на колонне ∆P .
Величину этого ∆P (сопротивления) легко наблюдать по высоте столба жидкости в специальной манометрической трубочке, расположенной в нижней части колонны (см. рис.6). Если колонна не работает, то жидкость в этой трубочке находится на нижнем уровне. Стоит вывести колонну на рабочий режим, давление внизу колонны возрастет, и столбик жидкости, уравновешивая перепад ∆P, поднимется на определенную высоту Н, связанную с перепадом соотношением ∆P = ρgΝ (где: ρ - плотность жидкости, g = 9.81 м/с2). При нормальной работе колонны столбик жидкости должен находится на определенной и постоянной высоте Н . Величина этого перепада давления - высота столбика жидкости не превышает 350мм.
С помощью этого столбика очень удобно устанавливать расчетную мощность, подводимую к испарительной емкости, т.е. можно четко устанавливать оптимальную нагрузку на колонну по перепаду давления.
С помощью этого “измерительного прибора” можно легко определить момент захлебывания колонны. Столбик жидкости в манометрической трубочке в момент захлебывания колонны начинает быстро расти из-за накопления флегмы внутри колонны, которая мгновенно увеличивает сопротивление движению пара.

4.10 Флегмовое число и как правильно его установить.

На рис.8 изображены основные массовые потоки в ректификационной колонне. Испаренный в кубе пар Мп=М проходит по ректификационной части колонны вверх, полностью конденсируется в дефлегматоре, и превращается в дистиллят Мд=М . Часть этого дистиллята Е отбирают, а другая его часть возвращается обратно в колонну и называется флегмой R . Еще говорят, что флегма отправляется обратно в колонну для орошения (смачивания) ее контактных элементов.
Стоит отметить, что М= R+Е.
Флегмовое число: V=R/Е - это отношение количества флегмы R , возвращаемой в колонну, к количеству отбираемого дистиллята Е.
Если отбора спирта нет Е=0 , то весь дистиллят в виде флегмы R=М возвращается обратно в колонну.Тогда говорят, что колонна работает сама на себя, а флегмовое число колонны в таком состоянии равно бесконечности - V=∞ . В таком состоянии колонна обладает максимальной разделительной способностью, и количество теоретических тарелок в ней возрастает.
Если полностью открыть отбор Е=М , то возврата флегмы в колонну не будет R=0 . Тогда флегмовое число равно нулю. В этом случае, из-за отсутствия флегмы в колонне ее контактные элементы полностью “иссушаются”, тепломассообменные процессы прекращаются, и ректификационная колонна превращается в обычный "самогонный аппарат". Естественно это превращение является временным и обратимым - без физических нарушений в колонне.
Для получения качественного спирта флегмовое число должно быть не менее V≥3. Это означает, что из 4-х частей дистиллята, образующегося в дефлегматоре, только 1 часть можно отобрать, а 3 части необходимо отправить обратно в колонну для орошения ее контактных элементов. Только в этом случае не произойдет нарушения тепломассообменных процессов в колонне.
Еmax= ¼М.
Помните!, что уменьшая отбор спирта, Вы улучшаете его качество.
Если флегмовое число настолько значимо для правильной работы колонны, то хотелось бы дать четкую и простую рекомендацию для его установки с помощью регулятора отбора.
ПРАВИЛО ОТБОРА:
Вариант 1 (основной):
С помощью секундомера и мерного цилиндра установите рекомендованный в паспорте отбор.
Вариант 2 (проверочный для любой фракции):
Отбор был выбран правильно, если через 2-3мин после его прекращения температура в колонне не уменьшилась.

4.11 Мощность, производительность, резервы.

На этапе ректификации к колонне должна подводиться только та технологическая мощность (), которая указана в паспорте на Вашу установку. В этом случае колонна работает без захлебывания и обеспечивает максимальную эффективность разделения.
Так, например, при технологической мощности в 1кВт теоретически будет испаряться вполне определенное количество спиртовых паров:

после конденсации этих паров в дефлегматоре образуется 4,86л/час дистиллята.
Для реализации процесса ректификации, как было отмечено выше, мы можем теоретически отбирать только ¼ часть всего дистиллята, образующегося в дефлегматоре, что составляет Еmax = 1,2 л/час. Эта величина и является предельной теоретической производительностью установки на спиртовом режиме при подводимой мощности в 1кВт.
Наша фирма несколько занижает значение теоретической производительности и рекомендует для гарантированного получения положительного результата делать отбор не более Еном = 1 л/час. Это связано с тем, что не вся тепловая технологическая мощность работает на парообразование, поскольку существуют тепловые потери. Эти потери, в основном, связаны с размером испарительной емкости и обычно не превышают 10…15%. Однако, если сильно увеличить объем испарительной емкости, то эти потери могут превзойти наш 20%-ый резерв по производительности.
Таким образом, для Вашей колонны существует вполне определенная технологическая мощность и вполне определенный регламентированный процессом ректификации отбор. Отсюда следует ПРАВИЛО ПРОИЗВОДИТЕЛЬНОСТИ:
1кВт технологической мощности может давать только 1л/час качественного спирта-ректификата.
Это правило и отразилось в названиях наших установок, т.к. проверка и отработка нашего универсального оборудования ведется на этой типовой и наиболее изученной жидкости - этиловом спирте.

5. Практика ректификации спирта

Как уже отмечалось, в примесях находящихся в бражке, обнаружено около 70 разнообразных компонентов: кислоты, ацетоны, эфиры, альдегиды, легкие и тяжелые спирты, сивушные масла и т.д. Примеси образуются в момент приготовления сусла, но более всего накапливаются при брожении, а при перегонке бражки почти полностью попадают в СС.
Основная задача ректификации - это четкое отделение примесей от спирта-ректификата.
Количество примесей в обезвоженном дистилляте (то есть в дистилляте за вычетом воды) обычно не превышает 6%. Конкретное количество “отходов” обычно зависит от точности соблюдения технологии приготовления бражки. Многие из этих примесей трудно отделимы от СР, и только правильная работа на ректификационном оборудовании позволяет избавиться от них в товарной части спирта-ректификата.
С практической точки зрения все существующие в СС примеси (упомянутые ранее 6%) можно разделить на две группы по отношению к температуре кипения СР (tкип = 78,15°C при 760мм.рт.ст.):
-головные (≈ 2.5%);
- хвостовые (≈ 3.5%).
К головным примесям относятся все вещества, имеющие температуру кипения меньше 78,15°C и предшествующие (по времени процесса ректификации) появлению СР из ректификационной колонны. Именно эти примеси занимают первую (головную) очередь на отбор из ректификационной колонны и именно за ними встает в свою очередь СР. Среди этих веществ наиболее известными являются метиловый спирт (tкип=64,7°C ) и альдегидная группа примесей, у которой tкип несколько меньше, но очень близка к tкип СР.
К хвостовым примесям относятся все вещества, имеющие температуру кипения больше 78,15°C, эти вещества отгоняются сразу после СР. Именно они занимают свое место в хвосте общей очереди за СР. Среди этих веществ наиболее известной является группа сивушных масел (tкип несколько больше, но очень близка к tкип СР).

5.1 Подготовка колонны к работе.

а) Соберите ректификационную установку так, как указано в ее паспорте.
б) Для дистилляции заполните испарительную ёмкость на 2/3 своего объема бражкой, если перегонку проводите с помощью ректификационной колонны.
Для ректификации заполните испарительную ёмкость на 3/4 своего объема спиртом-сырцом, при крепости не более 35-45%.
в) Перекройте отбор.
г) Проверьте герметичность сборки.
д) Включите поток охлаждающей воды.
е) Включите нагрев кубовой жидкости.
Полное время подготовки колонны к работе занимает обычно не более 5-20 мин и зависит от, навыка и готовности всего оборудования к работе (места подключения установки к электросети и сети водяного охлаждения).

5.2 Процесс ректификации.

Процесс ректификации контролируется и регулируется по показанию термометра. Типовая зависимость изменения температуры t по времени представлена на рис.9, с указанием пяти периодов:


Рис.9 Изменение температуры при ректификации спирта.

А) Нагревание.

СС в испарительной емкости нагревается всеми установленнми в ней ТЭНами суммарной мощности - . Через некоторое время СС в кубе закипает, и начинается постепенный прогрев колонны поднимающимся вверх паром. В этот момент необходимо сразу перейти на технологическую мощность, указанную в паспорте установки.
Если такое переключение не произвести, то через несколько секунд колонна захлебывается. ПОМНИТЕ, что в этом состоянии колонна может находиться не более 30-60 секунд, иначе произойдет переполнение колонны и дефлегматора дистиллятом и начнется его аварийный сброс через верхний штуцер дефлегматора наружу. Если Вы всё же упустили момент начала кипения, и колонна захлебнулась, то Вам придется смириться с потерями спирта, и выключить колонну. Затем дождитесь прекращения процесса захлебывания и включите .
После прогрева колонны наблюдается скачок температуры, отмечаемый термометром.

Б) Стабилизация.

Колонна работает на технологической мощности. Отбор перекрыт Е =0. Колонна работает сама на себя, флегмовое число V=∞ . Наблюдая показания термометра, дождитесь уменьшения температуры и ее стабилизации на самом минимальном уровне.
В этот момент проходит процесс разделения и накопления головных (легкокипящих) фракций в верхней части колонны. Через 10-15 минут этот процесс завершается, и температура в верхней части колонны достигает своего минимального значения и стабилизируется на 3-5˚С ниже ожидаемой температуры кипения СР. Величина этой разницы зависит от состава и количества легкокипящих фракций, находящихся в СС. Ожидаемую температуру кипения СР можно определить по атмосферному давлению в данный момент с помощью графика на рис.3.
Если у Вас нет термометра, то просто дайте колонне поработать самой на себя 15 минут. Если этот процесс затянется на большее время, то это будет только лучше. Вы точнее сможете отделить все головные примеси, накопившиеся к этому моменту в колонне.
Если Вы работаете с электронным компаратором температур, то можно более точно определить момент окончания стабилизации колонны по разности температур.

В) Отбор головных фракций.

Отбор головных фракций необходимо проводить как можно медленнее (с большим флегмовым числом). Медленный отбор не “размазывает” фракцию по колонне и не захватывает с собой следующие за ней фракции. Ввиду малого количества, но большого разнообразия веществ в головной фракции, эта часть дистиллята фактически является одним большим переходным участком (β на рис.7) от множества головных примесей к чистому СР.
Для правильной организации отбора на этом сложном периоде ректификации можно рекомендовать следующий подход, состоящий в разбивке этапа “В , на следующие друг за другом три равных по времени промежутка.

Такая схема организации отбора головных фракций гарантирует Вам:

  • полное выделение головных фракций из куба, и их полное отсутствие в следующей за ними пищевой фракции СР;
  • минимальный объем головной фракции и отсутствие в ней пищевой фракции СР;
  • подход к основной фракции СР с малой 50% -ой производительностью.

Этот период завершается достижением температуры, на 0,1-0.05˚С меньшей . Условно считается, что количество легкокипящих примесей, находящихся в этот момент в СР и вызывающих такое понижение температуры кипения СР, соответствует допустимым пищевым нормам.
На практике самым точным прибором для принятия решения об окончании периода отбора головных фракций и начала отбора пищевого СР является обычный “человеческий нос”.
Контроль получаемого дистиллята по запаху проводят следующим образом:

  • накапайте несколько капель отбираемого дистиллята на ладонь;
  • разотрите эту лужицу по всей поверхности ладони;
  • поднесите ладонь к лицу и вдохните носом испарившийся с ладони дистиллят.

Такой мгновенный и достаточно точный анализ всегда будет Вам некоторым подспорьем при ректификации спирта.
Общее количество головных фракций, полученных за этот период, составляет 1...3% от ожидаемого количества спирта и зависит от качества исходного сырья. СЛЕДУЕТ ПОМНИТЬ!, что полученный при отгонке головных фракций дистиллят не является пищевым продуктом, так как состоит, в основном, из эфиров, ацетонов, альдегидов и других ядовитых веществ, и может быть использован ТОЛЬКО для технических нужд, например, в качестве растворителя.

Г) Отбор фракции пищевого спирта.

Установим новую, чистую и большую по объему приемную емкость. Увеличим отбор до Еном , который сохранится до конца всего процесса ректификации. Проверим этот отбор с помощью секундомера и мерного цилиндра. Через 5-10мин проконтролируем показания термометра. Если все было сделано правильно, то показания термометра не изменятся. Причем эта температура останется неизменной в течение всего периода отбора пищевой фракции.
Получаемый с этого момента СР является высококачественным пищевым продуктом. Однако, его состав (неотличимый многими даже по запаху) постепенно меняется и может быть разделен на три части:

  • первые 5% общего объёма СР еще будут содержать в себе следы головных фракций
  • центральная часть - порядка 80% общего объёма СР будут абсолютно чистыми
  • и 5% общего объёма СР перед окончанием этого режима начнут приобретать следы хвостовых.Учитывая последнее замечание, можно рекомендовать для отбора пищевой фракции приготовить две отдельные помеченные ёмкости, которые использовать для отбора первой 10% -ой и последней 10%-ой порции СР.

При получении центральной части СР можно подобрать максимальный отбор Еmax (флегмовое число близко к V=2,5 ). Значение Еmax в основном зависит от качества перерабатываемого СС, поэтому требуется его уточнение при каждой ректификации. Однако, поиск и уточнение его можно рекомендовать только после полного освоения процесса ректификации по данной инструкции. Для нахождения Еmax необходимо пользоваться вторым вариантом правила отбора.
Но помните - чем меньше отбор тем выше качество!.
На этом режиме ректификации не требуется постоянного присутствия около аппарата, а приемные емкости заменяются по мере их наполнения.
При получении третьей части пищевого СР рекомендуется пользоваться промежуточной емкостью, из которой периодически, предварительно убедившись в соответствии показания термометра температуре кипения СР, переливать спирт в основную емкость.
Такой прием позволяет в случае, если будет упущен момент повышения температуры (поступление СР с большей концентрацией тяжелых спиртов и сивушных масел), не допустить попадания “плохого” спирта в “хороший”.
Отбор СР завершается при достижении температуры на 0,1…0,05˚С выше температуры . Условно считается, что количество тяжелокипящих примесей, находящихся в этот момент в СР и вызывающих такое повышение температуры кипения, соответствует допустимым пищевым нормам.
Приближение и окончание этого момента можно "предугадать" по уже произведенному количеству СР.

Д) Отбор хвостовых фракций (остатка).

Заменяем приемную емкость или оставляем промежуточную (в которую уже упущен “хвост”). Настройку колонны не изменяем - мощность ; отбор Еном.
Процесс отбора остатка завершается при достижении уровня температуры порядка 82...85˚С, или прекращается по контролю запаха.
ВНИМАНИЕ! Отобранный остаток содержит еще достаточное количество этилового спирта. Его можно считать особым СС с большим содержанием примесей сивушных масел и тяжелых спиртов. Он также как и СС не является пищевым продуктом, поэтому применять его для пищевых целей категорически запрещается. Полученный остаток можно повторно переработать с новой порцией СС. Или, что более предпочтительно, произвести его ректификацию отдельно, предварительно накопив 10…20 остатков (не менее 30% объема испарительной емкости).

5.3 Повторная ректификация.

Повторная ректификация проводится только в следующих случаях:
а) есть необходимость получить спирты типа "Экстра" и "Люкс" с наименьшим содержанием примесей из очень плохого исходного сырья;
б) неудовлетворительное качество СР, полученного при первой ректификации (причины: несоблюдение рекомендаций данной инструкции в процессе обучения).
Для проведения повторной ректификации необходимо весь пищевой СР (а в случае его очень низкого качества только его центральную часть), предварительно разбавив водой до концентрации 40-45%, залить в хорошо вымытую испарительную емкость и повторить ректификацию как указано в разделе 5.

Примечание к разделу 5

Наверно Вы обратили внимание, что крепость СС, используемого для проведения процесса ректификации, рекомендована в пределах 35-45%. Именно при этой концентрации СС обеспечивается наивысшее качество получаемого СР.
Не увеличивайте эту концентрацию!
Указанная крепость СС может быть достигнута и при обычной (прямой) перегонке бражки на простейших перегонных аппаратах.

6. Химическая обработка бражки и спирта-сырца.

А) химическая обработка бражки.

При соблюдении технологии приготовления бражки сусло постепенно увеличивает свою кислотность в процессе брожения - и это нормально. В этом случае не требуется какая-либо химическая обработка.
Иногда кислотность бражки может повыситься сверх нормы. Это может произойти в силу разнообразных причин, связанных с нарушением технологии:

  • не была проведена стерилизация сусла, и процесс брожения “захватили” дикие дрожжи;
  • по случайности резко понизилась температура в помещении, и бражка остыла и “остановилась” и ее брожение перешло в уксусное.

В таких случаях перед перегонкой рекомендуется искусственно понизить кислотность с помощью щелочей. Если такую обработку не провести, то в процессе нагревания в бражке резко усиливаются химические реакции, которые могут стать (а могут и не стать) причиной образования новых сопутствующих примесей, влияющих на чистоту СР.

Б) химическая обработка спирта-сырца.

Если все предыдущие действия были правильными, то химическая обработка спирта-сырца не требуется.
Если спирт-сырец получен из фруктового сырья (плохое вино) или были допущены ошибки в предыдущих действиях (об этом Вы можете узнать только после правильной ректификации), то следует провести химическую обработку спирта-сырца. Точные данные для этой процедуры можно получить только после очень точных и тонких анализов сырья. Здесь даны только общие рекомендации.
ОБЩЕЕ ЗАМЕЧАНИЕ - лучше соблюдать предыдущую технологию, чем “увлекаться” химической обработкой.
Основная задача этой обработки - нейтрализации кислот в СС и проведение реакций этерификации в результате которых некоторые кислоты и спирты, имеющие летучесть близкую к ЭС, переходят в более летучие (эфиры) и менее летучие (тяжелые спирты) химические соединения, что существенно повышает качество СР в процессе ректификации.
Для этого в СС добавляют 1…2 г/л щелочи (КОН или NaOH), предварительно разведя их в небольшом количестве воды. Обычно такой обработки оказывается достаточно для начала ректификации.
В случае очень плохого качества СС (к сожалению это выясняется только после проведения процесса ректификации) проводят его дополнительную обработку марганцовокислым калием (марганцовкой), который, предварительно разведя в небольшом количестве воды, добавляют в СС в количестве 1,5…2 г на каждый литр спирта, находящейся в СС. Раствор тщательно перемешивают и оставляют в течение 15…20 минут для завершения химической реакции. После этого снова добавляют щелочь (в прежнем количестве) и оставляют для осветления на 8…12 часов. Затем СС фильтруют и проводят ректификацию.

7. Проверка качества спирта.

Проверка качества спирта включает следующие испытания:

Определение цвета и прозрачности.

В чистый сухой цилиндр из бесцветного и прозрачного стекла емкостью 100-150 мл наливают испытуемый спирт и в проходящем рассеянном свете наблюдают цвет, оттенок и наличие в спирте механических примесей.

Определение запаха и вкуса.

Небольшое количество испытуемого спирта помещают в сосуд с хорошо закрывающейся пробкой, разбавляют 2,5…3,0 объемами холодной питьевой воды и тотчас же после предварительного сильного перемешивания производят испытание на запах и вкус.

Определение содержания этилового спирта (крепости).

Концентрацию спирта определяют обязательно при 20˚С спиртометром (АСП 95-105, АСП-2 96-101, спиртометром с термометром АСПТ 60-100% или денсиметром N16 0,76-0,82).

Проба на чистоту.

10 мл испытуемого спирта наливают в узкогорлую колбу емкостью 70мл и быстро прибавляют в 3…4 приема при постоянном взбалтывании 10 мл серной кислоты (плотность 1,835). Полученную смесь тотчас же нагревают на спиртовке, дающей пламя высотой 4…5 см и диаметром в нижней широкой части около 1 см. Во время нагревания жидкость в колбе все время вращают так, чтобы огонь не касался колбы выше границы нагреваемой жидкости. Нагревание смеси прекращают, когда пузырьки выходят на поверхность жидкости, образуя пену; процесс нагревания длится 30…40 секунд, после чего смеси дают возможность спокойно остыть. После охлаждения смесь в колбе должна быть совершенно бесцветной.
Для точности испытания содержимое колбы переливают (после охлаждения) в специальный цилиндр (пробирку) с притертой пробкой и, пользуясь штатив-камерой, наблюдают окраску смеси, сравнивая со спиртом, а также кислотой, взятыми в равных объемах и налитыми в отдельные цилиндры (пробирки) такого же размера и качества стекла. Результат испытания признается положительным, если смесь окажется такой же бесцветной, как спирт и кислота.

Проба на окисляемость.

Цилиндр с притертой пробкой и меткой 50 мл ополаскивают спиртом, наполняют этим же спиртом до метки и погружают на 10 минут в воду, имеющую температуру 15˚С, налитую в стеклянную ванну выше уровня спирта в цилиндре. Затем в цилиндр прибавляют 1 мл раствора марганцевокислого калия (раствор 0,2г в 1 л воды), закрывают цилиндр пробкой и, перемешав жидкость, вновь погружают в ванну с водой.
При стоянии красно-фиолетовая окраска смеси постепенно изменяется и достигает окраски специального типового раствора, появление которой принимается за конец испытания.
Для наблюдения за изменением окраски испытуемой смеси под цилиндр подкладывают лист белой бумаги. Время, в течение которого происходит реакция окисления, выражается в минутах. Результат испытаний признается положительным, если окраска сохраняется в течение 20 минут.

Определение содержания фурфурола.

В цилиндр с притертой пробкой емкостью 10 мл приливают с помощью капельницы 10 капель чистого анилина, 3 капли соляной кислоты (плотность 1,1885кг/л) и объем доводят до метки испытуемым спиртом.
Если в течение 10 минут раствор остается бесцветным, считают, что спирт выдержал испытание. Появление красного окрашивания характеризует наличие фурфурола.